尽管近年来对受约束的多目标优化的兴趣日益越来越大,但受约束的多目标优化问题(CMOPS)仍然不令人满意,理解和表征。因此,困难且缺乏正式背景的适当CMOPS的选择。我们通过扩展横向分析来解决该问题,以限制多目标优化。通过采用四种探索性景观分析技术,我们提出了29个景观特征(其中19个是新颖的)来表征CMOPS。然后,这些景观特征用于比较八个常用的人工测试套针对基于物理模型的现实世界问题的最近提出的套件。实验结果表明,人工测试问题未能充分代表一些现实特征,例如目标和约束之间的强负相关性。此外,我们的研究结果表明,所有学习的人工测试套件都具有优缺点,并且不存在“完美”套件。基准设计人员可以使用所获得的结果根据他们想要探索的特征来选择或生成适当的CMOP实例。
translated by 谷歌翻译
顺序推荐旨在为特定时间戳在特定时间戳提供历史行为中为用户选择最合适的项目。现有方法通常根据像马尔可夫链等转换的方法模拟用户行为序列。然而,这些方法也隐含地假设用户在不考虑用户之间的影响而彼此独立。实际上,这种影响在序列推荐中发挥着重要作用,因为用户的行为容易受其他人的影响。因此,期望聚合用户行为和用户之间的影响,这些用户在时间上演化并涉及用户和项目的异构图。在本文中,我们纳入了动态用户项异构图,提出了一种新的顺序推荐框架。结果,可以考虑历史行为以及用户之间的影响。为此,我们首先将顺序建议形式正式确定估计时间动态异构图和用户行为序列的条件概率的问题。之后,我们利用条件随机字段来聚合异构图形和用户行为以进行概率估计,并采用伪似然方法来得出易行目标函数。最后,我们提供所提出的框架的可扩展和灵活的实现。三个现实世界数据集的实验结果不仅展示了我们所提出的方法的有效性,而且还提供了一些关于顺序推荐的有洞察力的发现。
translated by 谷歌翻译
茶叶菊花检测在开花阶段是选择性菊花收获机器人发展的关键部件之一。然而,在非结构化领域环境下检测开花的菊花是一种挑战,鉴于照明,闭塞和对象量表的变化。在这方面,我们提出了一种基于Yolo的茶叶菊花检测(TC-YOLO)的高度融合和轻量级的深度学习架构。首先,在骨干组件和颈部部件中,该方法使用跨级部分密度的网络(CSPDenSenet)作为主网络,并嵌入自定义特征融合模块以引导梯度流。在最终的头部部件中,该方法将递归特征金字塔(RFP)多尺度融合回流结构和腔间空间金字塔(ASPP)模块结合在一起,具有腔卷积以实现检测任务。得到的模型在300个现场图像上进行了测试,显示在NVIDIA TESLA P100 GPU环境下,如果推断速度为每个图像的47.23 FPS(416 * 416),则TC-Yolo可以实现92.49%的平均精度(AP)在我们自己的茶叶菊花。此外,该方法(13.6M)可以部署在单个移动GPU上,并且可以进一步开发为未来选择性菊花收获机器人的感知系统。
translated by 谷歌翻译
Temporal modeling is key for action recognition in videos. It normally considers both short-range motions and long-range aggregations. In this paper, we propose a Temporal Excitation and Aggregation (TEA) block, including a motion excitation (ME) module and a multiple temporal aggregation (MTA) module, specifically designed to capture both short-and long-range temporal evolution. In particular, for short-range motion modeling, the ME module calculates the feature-level temporal differences from spatiotemporal features. It then utilizes the differences to excite the motion-sensitive channels of the features. The long-range temporal aggregations in previous works are typically achieved by stacking a large number of local temporal convolutions. Each convolution processes a local temporal window at a time. In contrast, the MTA module proposes to deform the local convolution to a group of subconvolutions, forming a hierarchical residual architecture. Without introducing additional parameters, the features will be processed with a series of sub-convolutions, and each frame could complete multiple temporal aggregations with neighborhoods. The final equivalent receptive field of temporal dimension is accordingly enlarged, which is capable of modeling the long-range temporal relationship over distant frames. The two components of the TEA block are complementary in temporal modeling. Finally, our approach achieves impressive results at low FLOPs on several action recognition benchmarks, such as Kinetics, Something-Something, HMDB51, and UCF101, which confirms its effectiveness and efficiency.
translated by 谷歌翻译